Yunhan Zhao

	4209 Donald Bren Hall, Irvine, CA +1-607-240-6250 yunhaz5@ics.uci.edu; yunhanz@google.com https://www.ics.uci.edu/~yunhaz5/		
RESEARCH INTERESTS	Computer vision, Machine learning, 3D scene perception, Generative models, Four dation Models (LLM/VLM), Egocentric vision, Domain adaptation		
	 Software Engineer, Google Research, developing and prototyping on-device machin tational photography features for Pixel cameras. 	Jul. 2024 - present are learning and compu-	
ACADEMIC BACKGROUND	 University of California, Irvine Ph.D. in Computer Science Advisor: Charless Fowlkes 	Jun. 2024	
	 Johns Hopkins University M.S. in Applied Mathematics and Statistics Optimization and Operation Research Track 	May. 2019	
	M.S. in RoboticsAdvisor: Alan YuillePerception and Cognitive Track	May. 2018	
	 Binghamton University, State University of New York B.S. in Mechanical Engineering Cumulative GPA: 3.90/4.0; Summa Cum Laude Transferred from Southeast University, Nanjing, China 	k May. 2016	
RESEARCH EXPERIENCE	 Google AR SWE Internship, Advisor: Neil Goeckner-Wald Proposed and implemented a transformer-based image specifically for improving text clarity on the AR/VR de Designed a new quantitative metric that measures the t images by leveraging the optical character recognition (Mountain View, CA Jun. 2023 - Sep. 2023 e enhancement pipeline evice. ext clarity of enhanced OCR) scores.	
	 Adobe Research Research Internship, Advisor: Connelly Barnes Advanced 3D-aware generative models that allow video sy image with user-defined camera trajectories. 	Remote Jun. 2022 - Sep. 2022 ynthesis from one single	
	• Implemented an efficient ray-sampling approach that learning with differentiable neural renders.	allows fast and stable	
	Research Internship, Advisor: Connelly BarnesImproved the reference-based image inpainting model up ometry.	Jun. 2021 - Dec. 2021 nder complex scene ge-	
	• Proposed GeoFill, a novel optimization-based 3D-award achieves state-of-the-art performance.	e warping module that	

Carnegie Mellon University, The Robotics Institute

self-generated "hard" examples.

Research Assistant, Advisor: Deva Ramanan and Shu Kong Jun 2020 - Sep 2020

• Explored the problem of LiDAR densification in autonomous driving for better downstream tasks, such as 3D object detection.

Remote

• Successfully densified LiDAR sweeps by adopting monocular depth completion with camera egomotion compensation.

Johns Hopkins University, CCVL Baltimore, MD

- Research Assistant, Advisor: Alan Yuille
 Feb. 2018 May. 2019
 Improved the object classification accuracy by complementing training sets with
 - Proposed ITNs that achieved state-of-the-art classification performances on several benchmark datasets.

Massachusetts Institute of Technology, CoCoSci Cambridge, MA

- Research Assistant, Advisor: Joshua Tenenbaum Jun. 2018 Sep. 2018
 Studied the problem of meta few-shot learning with minimal supervision while capable of generating samples from highly structural latent space.
 - Achieved close to state-of-the-art classification performance on the Omniglot and Mini-ImageNet datasets.

 Johns Hopkins University, CIS
 Baltimore, MD

 Research Assistant, Advisor: Rene Vidal
 May. 2017 - Dec. 2017

 • Proposed a novel deep neural network: Deep MagNet that specifically solves cross-modality domain adaptation problems.
 • Outperformed state of the art approaches via extensive experiments included

• Outperformed state-of-the-art approaches via extensive experiments, including transferring between Office-Caltech, Sketch-250, Caltech-250 and CAD rendered images.

PUBLICATIONS 8. Yunhan Zhao, Qianqian Shen, Nahyun Kwon, Jeeeun Kim, Yanan Li, and Shu Kong. Instance Detection via Foundation Model Adaptation. In submission, 2024

- Aodong Li, Yunhan Zhao, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, Stephan Mandt. Zero-Shot Batch-Level Tabular Anomaly Detection Using LLMs. In International Joint Conference on Artificial Intelligence, Anomaly Detection with Foundation Models Workshop, 2024
- Yunhan Zhao, Haoyu Ma, Shu Kong, Charless Fowlkes. Instance Tracking in 3D Scenes from Egocentric Videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024
- 5. Qianqian Shen^{*}, **Yunhan Zhao**^{*}, Nahyun Kwon, Jeeeun Kim, Yanan Li, and Shu Kong. A high-resolution dataset for instance detection with multi-view instance capture. In *Thirty-seventh Conference on Neural Information Processing Systems, Datasets and Benchmarks Track*, 2023
- 4. Yunhan Zhao, Connelly Barnes, Yuqian Zhou, Eli Shechtman, Sohrab Amirghodsi, and Charless Fowlkes. Geofill: Reference-based image inpainting with better geometric understanding. In *The IEEE Winter Conference on Applications* of Computer Vision, 2023
- 3. Yunhan Zhao, Shu Kong, and Charless Fowlkes. Camera pose matters: Improving depth prediction by mitigating pose distribution bias. In *Proceedings*

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15759-15768, 2021

- 2. Yunhan Zhao, Shu Kong, Daeyun Shin, and Charless Fowlkes. Domain decluttering: Simplifying images to mitigate synthetic-real domain shift and improve depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3330–3340, 2020
- 1. Yunhan Zhao, Ye Tian, Charless Fowlkes, Wei Shen, and Alan Yuille. Resisting large data variations via introspective transformation network. In *The IEEE Winter Conference on Applications of Computer Vision*, pages 3080–3089, 2020

TEACHING EXPERIENCE	• Teaching Assistant , University of California, Irvine CS 216: Image Understanding	Spring 2020
	• Teaching Assistant , University of California, Irvine CS 116: Computational Photography and Vision	Winter 2020
	• Teaching Assistant , University of California, Irvine CS 178: Machine Learning and Data Mining	Fall 2019

INVITED1. Imperial College London Reading Group: Camera Pose Matters: Improving
Depth Prediction by Mitigating Pose Distribution Bias; Irvine, CA (Remote);
Jun. 2021

PROFESSIONAL Conference Reviewer:

ACTIVITY • CVPR, ICCV, ECCV, WACV

Journal Reviewer:

• Neurocomputing, TPAMI